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Abstract

This technical report describes SSSim, the Simple and Scalable Simulator

for P2P streaming systems. SSSim can be used to evaluate the stream-

ing performance of different chunk and peer scheduling algorithms, and

is designed for performance and scalability allowing the simulation of the

diffusion of a very large number of chunks over large number of peers in

reasonable times. This result has been obtained by optimising the simu-

lator for recurrent workloads and minimising the memory footprint.

1 Introduction

P2P streaming and in particular P2P support for IP-TV are becoming not only
hot research topics, but also available systems and services like [Liu07, HHX+03,
HLL+06].

The key property for the support of live streaming is the guarantee of a low
distribution delay of all (or most of) the information to all peers. The property
is strictly related to the overlay characteristics and the scheduling algorithms
that distribute chunks to peers.

This technical report describes the SSSim simulator, designed to efficiently
handle large scale P2P TV distribution systems and simulate transmissions
with long TV streams. The simulator is easily extendible with new scheduling
algorithms.

The technical report is organised as follows. Section 2 introduces and defines
the system we consider, and the approximation we make for the formal state-
ment of the problem. Section 3 introduces some of the scheduling algorithms
we consider, both for chunk and peer selection. Section 4 describes the SS-
Sim simulator, its principles and the design decisions made. Section 6 presents

∗This work is supported by the European Commission through the NAPA-WINE Project
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FP7-ICT-2007-1, 1.5 Networked Media, grant No. 214412
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some simulation results showing both the scalability of SSSim as well as some
properties of the studied algorithms.

2 Problem Statement

We study the scheduling procedure (chunk and peer selection) for dissemination
at each peer in random, non structured overlay networks. We consider only
distributed algorithms, and the goal is defining bounds for these algorithms.
It is well known that the lower bound on the dissemination delay of any piece
of information, given that nodes have exactly the bandwidth necessary for the
streaming itself, is δlb = (⌈log2(N)⌉ + 1)T where T is the transmission time1.
It is also known [Liu07] that centralised schedulers can distribute every chunk
of a stream in exactly δlb. Also, in [BMM+08] it was proved that a bound
O(log2(N)) holds almost surely for several distributed schedulers if N → ∞ and
Mc → ∞ (Mc is the number of chunks). However, when real-time distribution
systems for live events are considered an asymptotic bound O(log2(N)) is not
equivalent to δlb.

The contribution of this paper focuses on formally prove the existence of an
entirely distributed optimal algorithm, and in finding robust, feasible schedulers
that in realistic conditions perform within a reasonable bound of the optimal
one. This contribution is the necessary starting point (a reference optimum)
for further research focusing on heterogeneous systems, on the interaction of
the overlay with the underlying IP network and on all those ‘impairments’ that
forbids finding closed-form formal solutions to problems in real networking sce-
narios.

2.1 System Description

The system considered is an overlay network of peers connected with a general
mesh topology. The total number of peers is N . Each peer is connected to
NN other peers2 which constitute its neighbourhood. A special case is when
NN = N − 1, which define a fully connected mesh network. We consider the
presence of one more “special peer” in the system that is the source of the video.
The source never receives chunks, so its links are logically mono-directional and
it is not part of any neighbourhood, i.e., its mono directional links are additional
to the others. Fig. 1 reports two sample topologies.

The source is a video server that distributes a (possibly live) video or TV
program. The video is divided in Mc chunks of equal duration emitted period-
ically by the source. All peers have unit bandwidth (i.e., they can transmit a
chunk in exactly the inter-chunk generation time) on the uplink and no limita-
tions on the downlink. We do not consider churn (i.e., the process of joining

1The bound comes from the fact that each node can transmit the chunk only after receiving
it, and the number of nodes owning the chunk at most doubles every T .

2For the sake of simplicity we restrict discussion to n-regular topologies: random graphs
with symmetric connectivity and n links per node.
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Figure 1: (A) – General mesh topology with N = 8 and NN = 3; the shaded
(pink) area is the neighbourhood of the black node; the source is the checkered
(yellow) node;
(B) – Full mesh with N = 4

and leaving the overlay by peers) and we focus, as main performance parameter,
on the diffusion time of chunks, which is the delay (after their emission from
the source) with which chunks are received by all peers. Formally, if ri is the
emission time of chunk Ci, then its diffusion time fi is the delay δ = t− ri such
that all N peers have received Ci.

The scheduling procedure is entirely distributed, but each peer has a perfect
knowledge of the status of its neighbours. This means that i) no global ordering
of peers is required; ii) the system is not structured; iii) schedulers’ decisions are
independent one another; vi) peers know exactly the subset of chunks already
received or being received by all neighbours; and v) signalling delay is negligible.

The first scheduling decision, which also affects the protocol supporting the
streaming, is whether a peer pushes information to other peers or if it pulls it
from other peers . . . or a mix of the two policies. Sometimes in the literature it
is stated that pushing information is a behaviour typical of structured systems,
and pull methods are more adapt for non-structured overlays. Recent papers
like [CdSLMM08, BMM+08] instead used push schedulers on non-structured
meshes. Indeed, the choice of whether it is better to push or pull information
is not related to the structure (or the lack of it) of the system, but to the
bandwidth bottleneck, which can create conflicts in scheduling decisions.

Push-based systems are suitable for systems where the bandwidth bottleneck
is the uplink, because this guarantees a priori that only one chunk will be
scheduled for transmission on the uplink, and that scheduling conflicts arising
from the distributed nature of the scheduling will insist on the downlink of other
peers, which has more resources and can accept multiple downloads.

If the situation were reversed (uncommon in networks dominated by ADSL
access links, but technically possible), then pull-based schedulers would solve a
priori the conflict on the downlink, and more bandwidth-endowed uplinks would
accommodate scheduling conflicts. Interestingly, a scenario with symmetric up-
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and downlink capacities does not offer an easy logical choice on whether pushing
or pulling information is the best choice.

Given the networking scenario depicted we obviously consider push-based
schedulers, but we claim that reversing the bottleneck hypothesis, pull-based
schedulers which are dual to those we prove optimal in the sequel can be easily
derived.

2.2 Formal Notation and Definitions

A system is composed by a set S = {P1, . . . PN} of N peers Pi, plus a special
node called source. Each peer Pi receives chunks Cj from other peers, and send
them out to other peers at a rate s(Pi). The source sends out chunks with a
rate s(source). The set of chunks already received by Pi at time t is indicated
as C(Pi, t).

The source, not included in S, generates chunks in order, at a fixed rate λ
(Cj is generated by the source at time rj = 1

λ
j). We normalise the system w.r.t.

λ, so that rj = j. Also, we set ∀i, s(Pi) = s(source) = λ = 1, which is the limit
case to sustain streaming.

If Dj(t − rj) be the set of nodes owning chunk Cj at time t, the worst case
diffusion time fj of chunk Cj is defined as the time needed by Cj to be dis-
tributed to every peer: fj = min{δ : Dj(δ)) = S}. According to this definition,
a generic peer Pi will receive chunk Cj at time t with rj + 1 ≤ t ≤ rj + fj , and
when considering an unstructured algorithm t will be randomly distributed in-
side such interval. Hence, in an unstructured system Pi is guaranteed to receive
Cj at most at time rj + fj . To correctly reproduce the whole media stream, a
peer must buffer at least F = max1≤j≤Mc

fj chunks before starting to play. For
this reason, the worst case diffusion time F is an important performance metric
for P2P streaming systems, and this paper will focus on it.

When ∀i, s(Pi) = λ = 1, at time t the source sends a chunk Cj (with rj = t)
to a peer and every peer Pi sends a chunk Ch ∈ C(Pi, t) to a peer Pk. All these
chunks will be received at time t + 1.

As discussed earlier, the minimum possible diffusion time fj for chunk Cj is
⌈log2(N)⌉+1. Chunk diffusion is said to be optimal if ∀j, fj = ⌈log2(N)⌉+1 =
F .

3 Scheduling Peers and Chunks

In a push-based P2P systems, when a peer Pi sends a chunk, it is responsible for
selecting the chunk to be sent and the destination peer. More formally, every
time that Pi sends a chunk Cj ∈ C(Pi, t) to a peer Pk, two scheduling decisions
are taken:

• The chunk Cj to be sent is selected by a chunk scheduler;

• The destination peer Pk is selected by a peer scheduler.
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This paper considers algorithms which first select the chunk Cj , and then
select a target peer Pk which needs Cj .

Some well known chunk scheduling algorithms are Latest Blind Chunk, Latest
Useful Chunk, and Random Chunk (again, blind or useful). The Latest Blind
Chunk algorithm schedules at time t the latest chunk:

Cj ∈ C(Pi, t) : ∀Ch ∈ C(Pi, t), rj ≥ rh (1)

Cj is scheduled even if all the other peers already have it. The Latest Useful
Chunk (LUc) algorithm modifies the chunk scheduler to select a chunk that is
needed by at least one peer. Formally:

Cj ∈ C′(Pi, t) : ∀Ch ∈ C′(Pi, t), rj ≥ rh (2)

where C′(Pi, t) is a subset of C(Pi, t) containing only chunks that have not al-
ready been received (or are not currently being received) by other peers. The
Random Chunk algorithms select a random chunk in C(Pi, t) (Random Blind
Chunk) or in C′(Pi, t) (Random Useful Chunk – RUc).

Once the chunk Cj to be sent has been selected, the peer scheduling algo-
rithms selects a peer Pk which needs Cj . If the LUc or RUc algorithm is used
for chunk scheduling, Pk can always be found.

The most commonly used peer scheduling algorithm is Random Peer, which
randomly selects a peer which needs Cj . In theory, the chunk scheduling algo-
rithm can select Pk ∈ S, but in practice peer Pi will only know a subset of all
the other peers, and will select Pk from a subset of S called neighbourhood. The
neighbourhood of peer Pi is indicated as Ni.

The case in which ∀i,Ni = S − Pi is special, and corresponds to a fully
connected graph.

3.1 Optimal Peer Scheduling

Random peer selection prevents achieving optimality, because the selected peer
might be unable to further distribute the chunk. The rationale behind optimal
peer selection should be the following: the selected destination peer should be
able to immediately take on the role of redistributing the chunk.

We define the “Earliest-Latest” peer scheduler (ELp) as follows: ELp selects
as target a peer Pl that needs Ch and owns the latest chunk Ck with the earliest
generation time rk:

Ch /∈ C(Pl, t) ∧ ∀Pj ∈ S, L(Pl, t) <= L(Pj , t) (3)

where L(Pi, t) = maxk{rk : Ck ∈ C(Pi, t)} is the latest chunk owned by or
in arrival to Pi at time t. If at time t Pi has not received any chunk yet,
L(Pi, t) = 0. If more peers exist that satisfy (3) one is chosen at random.

3.2 Optimal Chunk Scheduling

The LUc/ELp algorithm is optimal when used on a full mesh. Unfortunately,
when the neighbourhood size is reduced the worst-case performance of the
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LUc/ELp algorithm are badly affected (see Sect. 6) because any time that lim-
ited knowledge of the neighbourhood make a later chunk arrive to a peer before
an earlier one, the diffusion of this latter is stopped.

To solve this problem, an algorithm that embeds the number of replicas of
a chunk is needed. We define a deadline-based (Dl) scheduling algorithm that
works as follows:

1. Each chunk Ck is assigned a scheduling deadline dk, which is initialised to
dk = rk + 2 when the source sends Ck at time rk;

2. When peer Pi has to send a chunk at time t, the Dl scheduler selects the
useful chunk Ck having the minimum scheduling deadline:

Ck : ∀Ch ∈ C′(Pi, t), dk ≤ dh; (4)

3. Before sending Ck its scheduling deadline is incremented by 2 time units:
dk = dk + 2 (both Pi and the destination peer will see Ck with its new
scheduling deadline, while chunk instances present in other peers are ob-
viously not affected).

Note that the scheduling strategy based on selecting the chunk with a min-
imum deadline is known in literature as Earliest Deadline First (EDF), and is
mentioned as “Deadline Driven Scheduling” in a seminal paper by Liu and Lay-
land [LL73], but to the best of our knowledge, it has never been applied with
dynamic deadlines in distributed systems.

Observation 1 The scheduling deadline dk of a chunk instance Ck of peer Pi

is equal to rk + 2d, where d is the number of times that Ck has been selected by
the Dl schedulers along the path taken by the chunk till Pi.

4 Simulating a P2P Streaming System

While the most important properties of a chunk/peer scheduling algorithm have
to be formally proved, simulating the chunk diffusion is often very important to
understand the behaviour of an algorithm, to estimate its performance, and to
develop new algorithms.

Being the scheduling algorithms the core and engine of P2P systems, a sim-
ulator focusing specifically on scheduling, and abstracting to a higher level of
approximation the remaining parts of the system is needed. The most impor-
tant requirements for a such simulator are simplicity (so that implementing new
features to evaluate particular aspects of a scheduling algorithm is straightfor-
ward) and the possibility to easily implement new scheduling algorithms in a
flexible way.

Moreover, when developing a new scheduling algorithm it is important to
evaluate its performance in many different situations, and to ensure that the
algorithm works well for a large number of peers. For a streaming algorithm,
long-term stability (the fact that the diffusion delay of a chunk does not increase
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with the chunk number) is also important. Hence, the simulator must be able to
simulate the diffusion of a large number of chunks over a large number of peers.
This requirement is very important, and has two consequences:

1. the amount of memory used by the simulator should not grow too much
(in particular, it cannot be proportional to both the number of peers N
and the chunk number Mc)

2. performance matters.

The constraint on the amount of memory used by the simulator is needed for
allowing it to properly scale (for example, if the amount of required memory is
proportional to both N and Mc and that a pointer and an integer are needed
for every peer-chunk pair, then simulating the distribution of 20000 chunks over
10000 peers requires at least 1.5GB of memory). The simulator’s performance
are also important in order to be able to finish a simulation in a reasonable
time.

Summing up, the requirements for the simulator are:

• Flexibility

• Performance

• Simplicity

• Scalability

• Possibility to easily add/implement new scheduling algorithms

As an output, the simulator should be able to produce a trace of the chunk
diffusion (when used with a small number of peers/chunks, this feature is useful
to check the correctness of new algorithms, and to understand their dynamics
and chunk diffusion patterns) and some statistics about diffusion times (used
with large numbers of peers/chunks to evaluate the algorithms’ performance).

Finally, the simulator should be able to reproduce the chunk diffusion on full
meshes (useful for testing the optimality of a scheduling algorithm) or on various
kinds of overlays with different properties, both random as n-regular graphs or
Watts-Strogats topologies, or mimicking topologies actually built by distributed
algorithms. For this latter reason the possibility of reading topologies generated
by external tools in standard notation like dot3

As most of the existing simulators do not allow to easily implement new
scheduling algorithms, and we are not aware of any simulator providing the
requested features in a scalable and efficient way (providing reasonable perfor-
mance) a new simulator has been developed from scratch: SSSim, the Simple
and Scalable Simulator.

SSSim has been developed for performance and scalability, and most of the
design decisions have been taken based on these two main requirements (if

3See the URL: http://www.graphviz.org/ for additional information on dot and graph
visualisation.
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scalability and performance are not important requirements, then there are
probably better simulators than SSSim around).

The simulator has been released under the GPL4 and is available at http:

//imedia.disi.unitn.it/SSSim.

4.1 General Structure

The main reason for developing SSSim was to perform optimality tests on new
scheduling algorithms such as LUc/ELp and Dl/ELp [AKC09], and optimality
is defined when all the nodes have the same output bandwidth (see Section 2.2).
Hence, the simulator is optimised for this kind of simulations: at time t, the
source generates a new chunk, and every node Pi starts sending a chunk to a
target node Pj . All these chunks will be received at time t + 1, before starting
the new send cycle.

As a result, SSSim has been developed as a discrete-time simulator (op-
posed to an event driven simulator, that would be much less efficient in this
case, requiring an event queue and all the related overhead). However, the sim-
ulator has been designed to be modular and flexible (when this does not affect
performance), so most of its modules can be re-used in event driven simulations.

The simulator is organised in some software modules, interfaced using a clean
and well defined API:

• Overlay generation

• Main loop

• Scheduler

• Statistics

4.2 Overlay Generation

Each peer Pi is identified by a structure of type struct peer, which contains a
pointer neighbour an array of pointers to the neighbours. Such an array is filled
during the simulation startup time (but can be modified during the simulation
to implement churn and dynamic overlays by the overlay generation module.
Different kinds of overlays can be used, ranging from a full mesh to a pipeline
and passing through various kinds of random graphs.

The full mesh case is special, because it would require to allocate an array of
N − 1 elements for every peer Pi (and to fill it with with S − {Pi}), consuming
a large amount of memory (at least 4N(N − 1) bytes, depending on the size
of a pointer) which is not acceptable for scalable simulations. For this reason,
SSSim provides a special graph generator which sets the neighbourhood pointer
for all the peers to the same array, containing a list of all the peers. In this
way each peer Pi will see itself in its neighbourhood (but properly written

4http://www.fsf.org/licensing/licenses/gpl.html
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schedulers can easily cope with this without any performance loss), but the
memory requirements goes down to sizeof(void *)N .

Another special graph generator in the DOT graph importer, which generates
the overlay by reading the graph description (in the standard DOT language)
from a file. This feature allows SSSim to interoperate with other programs that
generate graphs using more complex and specialised algorithms: for example,
it is possible to import an overlay generated by PeerSim [] using the newscast
algorithm [VJVS03].

4.3 Scheduling

A scheduler is described by a schedule() function, with prototype

void schedu le ( s t r u c t peer ∗p , i n t t ,
i n t ∗chunk , s t r u c t peer ∗∗ t a r g e t )

where p is a pointer to the peer which has to send a chunk, t is the current time,
and the pair (Pi, Cj) selected by the scheduler (target peer and sent chunk) are
returned in chunk and target. This function is completely generic, but some
specialised schedulers schedule c p() (select the chunk first and the target peer
after) and schedule p c() (select the target first) are provided.

The schedule c p() and schedule p c() then call a peer sched() function
(that can be defined to ELp, RUp, etc..) and a chunk sched() function (that
can be defined to LUc, Dl, etc...).

In this way, it is possible to easily modify the chunk or peer scheduler (and,
if needed, it is also possible to use a scheduler that selects chunk and peer at the
same time). Other helper functions (for utility-based chunk or peer scheduling,
random scheduling, etc...) are also provided for convenience; in most of the
cases, a new scheduler can be easily obtained by combining existing functions,
but if needed the schedule() function can be completely replaced with a new
version rewritten from scratch.

For performance reasons, schedulers can be configured at compile-time, but
not at run-time (in this way, the cost of indirect function calls and/or switches
and conditional branches can be avoided). As a consequence, schedulers are
activated and configured using preprocessor #define directives.

4.4 The Main Loop

After initialising the overlay, the simulator sets t = 0 and starts running the
main loop that:

1. Receives “on the fly” chunks (that have been sent at time t − 1)

2. Generates a new chunk in the source, invokes the peer scheduler to select
a target peer, and sends the chunk (setting it as “on the fly”)

3. For each peer, invokes the schedule() function and sends out a chunk

4. Increases t, and returns to step 1
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Every time that a chunk is received by a peer, it is added to an array of
received chunks in the peer structure. However, while this approach can simplify
the development of the simulator and of new schedulers (and makes statistics
gathering very easy), it requires an amount of memory proportional to NMc,
penalising the simulator’s scalability. For this reason, SSSim can be configured
to use a reduced chunk buffer per peer; in this case, if B is the chunk buffer
size then the amount of memory required for a simulation is proportional to
NB. Buffer size handling has been made optional because in case of large
buffers (near to Mc) handling the buffer size is less efficient than storing all the
received chunks.

Note that the buffer size B imposes a maximum playout delay (the time after
which a chunk is discarded), but if the buffer is not properly handled the relation
between B and the playout delay is not immediately clear. The chunks buffer
management can introduce a significant overhead in the simulation. To reduce
such an overhead, SSSim inserts the chunks in the buffer according to their
generation times, so that chunk Ci generated at time ri is inserted in position
ri%B of the buffer. If B = 2k, then ri%B can be computed as ri&(B − 1),
reducing buffer management overhead significantly.

Note that the buffer size B imposes a maximum playout delay (the time
after which a chunk is discarded). However, the exact relation between maxi-
mum playout delay and B depends on the algorithm used to handle the buffer.
The buffer management technique presented above has the advantage that the
maximum playout delay is exactly equal to B.

5 Simulator Performance

Since SSSim has been designed for performance, the time needed to finish a
simulation (in different situations) has been evaluated by repeating a large set
of runs on an Intel(R) Pentium(R) D CPU running at 3.40GHz with 2GB of
RAM. All the experiments have been ran simulating a P2P system in which
all nodes have the same output bandwidth (equal to the source rate) and have
very large download bandwidth. A pretty standard scheduling algorithm (the
so called latest useful chunk / random useful peer or LUc/RUp algorithm) has
been used for diffusing the chunks.

5.1 Comparison with a Traditional Simulator

In a first set of experiments, SSSim performance have been compared with
the performance of P2PTVSim (as an example of a more traditional, event-
based simulator), in order to show the improvements due to SSSim’s design and
optimisations. The results are reported in Table 1.

In a first experiment, the diffusion of 3000 chunks over 1000 peers has been
simulated assuming that the peers are connected by a full mesh and have a
buffer size B = 32. From the table it is possible to notice that SSSim needed
less than 1/10 of P2PTVSim’s time to finish the simulation, and consumed about
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N Mc NN B Time SSSim Mem SSSim Time P2PTVSim Mem P2PTVSim

1000 3000 999 32 72s 2.945MB 835s 23.473MB
2000 3000 999 32 350s 3.9MB 5609s 82.461MB
3000 3000 999 32 993s 4.957MB 17355s 179.723MB
1000 3000 999 3000 371s 101.801MB 80282s 114MB

10000 10000 20 32 355s 12.953MB 2138s 21.148MB

Table 1: Comparisons between SSSim and a non-optimised simulator
(P2PTVSim).

1/10 of the memory. In the following experiments, the number of peers N has
been increased, showing that SSSim is able to keep under control the amount
of memory and execution time needed to finish a simulation (in particular, the
maximum amount of memory needed by SSSim seems to scale pretty well).
These first results indicate that the optimisations introduced in SSSim to speed
up the simulations on fully connected overlays are effective.

Next, the performance of the two simulators have been compared by increas-
ing the playout delay, to test the effectiveness of the optimisations introduced
in SSSim chunks buffer handling5. To ensure that no chunk is lost, the chunks
buffer size has been increased to 30006 (the number of chunks), while still main-
taining N = 1000 (to keep P2PTVSim’s simulations times under control). The
results in the table show that while the maximum amount of memory needed by
the simulators is comparable (because most of the memory is used in the chunks
buffer), SSSim is able to finish the simulation in a much shorter time. Since
the chunks buffer handling mechanism can introduce some overhead (and waste
some memory), when running simulations with “infinite” chunks buffer size it
can be useful to disable such a mechanism. SSSim allows to compile the chunks
buffer handling code out of the simulator. With this optimisation enabled, the
simulation finished in 238s and required only 93.461MB of memory.

All the simulations mentioned above focused on system configurations for
which SSSim has been heavily optimised (full mesh, large buffer sizes, . . .).
Hence, some additional simulations with reduced neighbourhood size and small
playout delays have been run. Again, the results indicate that SSSim’s opti-
misations are effective, allowing it to consume less memory than a traditional
simulator and to finish the simulations in a shorter time (in these cases, the
differences between SSSim’s performance and P2PTVSim’s ones are smaller,
because SSSim has not been specifically optimised for this setup). Increasing
the number of chunks, the time scaled about linearly for both the simulators
(for example, 30000 chunks were diffused in 1070s by SSSim and in 6625s by
P2PTVSim), and the amount of needed memory did not increase too much).

5Note that we are using SSSim as a testbed for these optimisations, that could also be
ported to other simulators

6Note that in SSSim the chunks buffer size must be a power of 2, so a buffer size of 4096
has actually been used
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Figure 2: CPU time as a function of N , Mc, NN and B.

5.2 SSSim Scalability

In a following set of experiments, we examined SSSim’s scalability, as a function
of four parameters: N , Mc, NN and B. Figures 2 and 3 show CPU time and
memory consumption as a function of these four parameters. Our reference
parameter set is N=10000, Mc=20000, NN=20 and B = 32, and we scale one
parameter at a time. The first curve for example represents simulations varying
N from 10000 to 80000 while keeping all other parameters at their reference
value.

The figure shows that the execution time is almost proportional to Mc which
is the best we could expect since each chunk is diffused individually. With a fixed
neighbourhood size, CPU time scales almost proportionally also in N , although
a slight extra time is needed due to the longer diffusion time of chunks in the
system. Again, we couldn’t expect better scaling. Execution time scales better
with NN , increasing with a small gradient. Increased computation time is due
to the use of latest useful chunk selection, which should verify all neighbour’s
state. Scaling would be even better with different peer scheduling algorithms
(such as blind ones). Finally, scaling in B is sub-linear with a very small gradi-
ent, which shows the efficiency of the implemented buffer management.

Memory usage scales almost proportionally to both N and B, which shows
that the main user of memory is the chunk buffers itself. Other parameters
influence memory usage only marginally. More specifically, memory usage does
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Figure 3: Memory consumption as a function of N , Mc, NN and B.

not depend on Mc, which property is very important for being able to simulate
streaming systems. Memory usage increase with NN is also almost negligible.

To understand whether these scaling properties hold for a larger set of pa-
rameters, we have also run simulations varying both N and Mc. Figures 4 and 5
show both CPU time and memory usage, confirming good scaling characteristics
in both parameters.

6 Some Simulation Examples

This section presents some examples of simulative results obtained by using
SSSim. In particular, it shows how SSSim can be used to compare the stream-
ing performance of different scheduling algorithms, focusing on LUc/ELp and
Dl/ELp. Although such algorithms have been proved to provide optimal perfor-
mance in the case of a fully connected graph (∀i,Ni = S−Pi), their performance
in more realistic situations can be analysed only through simulations.

6.1 Simulating P2P Streaming and Measuring Performance

The behaviour of the scheduling algorithms introduced in Section 3 (given as
LUc, RUc, or Dl, combined with either ELp or with RUp) is analysed through
simulations performed with SSSim. As defined in Section 2.1, an overlay of
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Figure 4: CPU time scaling both N and Mc (NN = 20 and B = 32).

Npeers is set up, each having unit upload and infinite download bandwidth.
The source distributes Mcchunks.

As explained in Section 2 the performance metric considered in this paper
is the worst case diffusion time F , and (as stated in Section 3), a scheduling
algorithm is optimal iff F = ⌈log2(N)⌉ + 1.

Figure 6 shows the worst case diffusion time of the six considered algorithms
as a function of the number of peers N . Each point was obtained running the
simulation 10 times, respective mean and its 90% confidence interval (due to ran-
dom choices in the selection algorithms) are shown. The figure shows LUc/ELp
and Dl/ELp to achieve optimal performance, significantly outperforming the
other algorithms.

6.2 Restricting the Overlay

As introduced in Section 2, in realistic situations a restricted overlay is used
instead of a fully connected graph. Such a restricted overlays is modelled as-
suming bidirectional relations and a pre-defined number (NN = ||Ni||) of neigh-
bour nodes. The resulting graph is modelled as a random NN-regular graph.
In following simulations, algorithms are evaluated on 10 samples of the random
NN-regular graph.

Figure 7 shows performance of different streaming algorithms as a function
of NN and shows how the LUc/ELp algorithm (which is optimal on a full
mesh) is highly sensitive to neighborhood restrictions and performs badly when
NN < N − 1. Dl/ELp, on the other hand, works better than all the other
algorithms and is able to achieve values of the worst case diffusion time fi near
to the optimum (which in this case is 11).
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Figure 5: Memory consumption scaling both N and Mc (NN = 20 and B = 32).

After verifying that Dl/ELp seems to perform reasonably for small NN val-
ues, some additional simulations have been ran to check if the various scheduling
algorithms are suitable for streaming. This has been verified by increasing the
number of chunks and checking if fi depends on the number of chunks. The
result of such simulations seems to indicate that if NN ≤ log2(N) then fi al-
ways increases with i. However, when NN > log2(N) Dl/ELp is often able to
distribute the chunks so that fi does not increase with i. This clearly depends
on the graph). For example, Figure 8 shows how the number of chunks affects
fi for NN = 8 and NN = 11 (note that N = 1000 ⇒ log2(N) = 9.9658).

6.3 Limiting the Chunk Buffer Size

From the last simulations, it can be seen that in many situations fi increases
with i (the performance of the algorithm dependends on the stream length),
hence the distribution mechanism results to be unstable in a streaming context.
The only solution to this problem is to define a playout delay D, and to discard
chunks Cj at time rj+D. This causes some chunk loss (for chunks Cj that would
have fi > D), but can make the distribution system stable again. Moreover,
the playout delay D can be used to dimension the chunk buffers in the peers (in
particular, each peer needs to buffer at most D chunks) 7.

First of all, it has been verified that when fixing a playout delay D the
performance of an algorithm become independent on the number of chunks.

7properly implementing such a chunks buffer size in the P2P simulator can enable some
optimisations (reducing the memory pressure, and the computations needed by the chunk
scheduler) which allow to perform simulate larger task sets. As a result, the following simu-
lations will be performed with N = 10000.
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Figure 6: Full mesh overlay; maximum chunk diffusion delay as a funcion of the
number of peers; 200 chunks

This has been done by simulating the diffusion of Mc chunks over 10000 peers
and varying Mc. Since some chunks can be lost, the performance should be
evaluated based on both chunk loss ratio and the maximum delay8;

Figure 9 plots the results of these simulations, showing that the perfor-
mance do not depend on the number of chunks (as expected, both LUc/ELp
and Dl/ELp achieve the optimal value for fi with 0 lost chunks. Hence, the
introduction of a playout delay is not affecting these two algorithms on a full
mesh). Based on these results, all the following simulations will be performed
using only 10000 chunks.

Finally, Figure 10 plots the chunk loss ratio for the various algorithms as
a function of the neighbourhood size. Note that for NN > 14 the chunk loss
ratio for Dl/ELp is 0, showing that it is possible to dimension the chunk buffer
size so that it does not affect the algorithm’s performance (to the authors’
best knowledge, this is not possible for the other algorithms). The worst case
diffusion time fi is not plot because it is always equal to 32 for all the algorithms
but Dl/ELp.
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