
DISI - Via Sommarive, 14 - 38123 POVO, Trento - Italy
http://disi.unitn.it

GRAPES: a Generic Environment

for P2P Streaming

Luca Abeni, Csaba Kiraly, Alessandro Russo,
Marco Biazzini, Renato Lo Cigno

June 2010

Technical Report # DISI-10-038
Version 1.0

This work is supported by the European Commission through the
NAPA-WINE Project (Network-Aware P2P-TV Application over
Wise Network – www.napa-wine.eu), ICT Call 1 FP7-ICT-2007-1,
1.5 Networked Media, grant No. 214412

GRAPES: a Generic Environment

for P2P Streaming

Luca Abeni, Csaba Kiraly,
Alessandro Russo, Marco Biazzini, Renato Lo Cigno

University of Trento, Trento - - Italy
luca.abeni@unitn.it, kiraly@disi.unitn.it,

russo@disi.unitn.it, biazzini@disi.unitn.it,
locigno@disi.unitn.it

Abstract

Practical implementation of new P2P streaming systems requires
a lot of coding and is often tedious and costly, slowing down the tech-
nology transfer from the research community to real users. GRAPES
aims at relieving this burden, and speed-up application development,
by providing a set of open-source components conceived as basic build-
ing blocks for building new P2P streaming applications. GRAPES
is designed to be usable in different environments and situations, to
have a minimal set of pre-requisites and dependencies, and not to
impose any particular constraints on applications using it. The de-
velopment of streamers in the Napa-Wine project [1] has shown that
using GRAPES P2P streaming applications with different character-
istics can be developed by only writing a small amount of glue code
that connects the desired functionalities and dictates the architecture
of the streamer.

1 Introduction

Peer-to-peer (P2P) technologies are becoming increasingly popular as a way
to overcome the scalability limitations intrinsic in traditional network ap-
plications based on a client/server paradigm. In particular, there is a great

3

interest in P2P streaming applications, Video on Demand and TV-like sys-
tems, because they have high demands in terms of bandwidth requirements
and IP-level multicast is not supported on the Internet. In the last years the
scientific community produced a lot of research work on improving the P2P
streaming technologies to provide better quality and to better exploit the
available resources; however, commonly used P2P TV applications [2, 3, 4]
not always follow such trends, and are still based on a architectures deriving
from file sharing. As a result, the network bandwidth is not used efficiently,
and the P2P TV clients can provide a good user experience only by being
very aggressive in network usage.

In the authors’ opinion, such a lack of technology transfer from the re-
search community to commonly used applications can be solved through the
availability of open-source P2P streaming applications, providing researchers
with a working codebase that can be easily modified to experiment and in-
tegrate novel ideas. In this sense, remember how the free availability of
open-source kernels such as Linux or BSD helped the OS research commu-
nity!

Unfortunately, integrating experimental techniques in an application some-
times requires drastic changes to its structure: for example, changing the lo-
cal chunk selection algorithm (the so-called “chunk scheduler”) can be easy,
but changing a P2P streaming application from “epidemic style” push [5] to
pull [6, 7], or more complex strategies [8] can require a complete redesign.
Hence, developing one single open source application risks to impose too
many constraints on the research that can be performed on it, requiring to
rewrite the application every time a new solution has to be tested (to look at
real numbers, in [9] the authors had to implement 5 different P2P streaming
application, writing more than 10000 lines of C++ code).

For this reason, within the NAPA-WINE project, a set of generic and
reusable components has been designed and developed, to provide a code-
base for building P2P streaming applications with (almost) any structure.
The resulting toolkit, named GRAPES (Generic Resource Aware P2P En-
vironment for Streaming), provides a set of building blocks that researchers
can use, combine, and modify to test and compare different ideas fostering
the development of new ideas as it happened in OS research [10].

This report is organised as follows: Sect. 2 discusses the requirements for
GRAPES, which drove the main design choices and influenced the GRAPES
structure, described in Sect. 3; Sect. 4 describes how to use GRAPES, and
presents some early experiences (showing how GRAPES can simplify the

4

development of P2P streaming applications); Sect. 5 is a snapshot of the
status of GRAPES at the time of this publication; and Sect. 6 finally presents
the conclusions and describes ongoing work.

2 Requirements

First of all, the functionalities provided by GRAPES should be usable by as
many applications as possible in as many different environments as possible.
This means that GRAPES should be able to run in many different platform-
s/operating systems, and should be accessible to many different development
tools and runtime environments. For this reason, GRAPES has been imple-
mented as a C library, since almost every development platform provides a C
compiler, and it is quite easy to develop bindings to other languages such as
python, java, etc... (C++ programs can directly link to the GRAPES library
without needing any kind of wrapper or special bindings). Moreover, C does
not requires complex runtime support, or system libraries.

For the same reason, the amount of dependencies for GRAPES has been
reduced to the minimum (no dependencies on external libraries, etc). The
result is that GRAPES can be used on many different systems, ranging from
large network servers to small and not-so-powerful embedded devices.

A second requirement, more difficult to fulfil, is that GRAPES should
not impose any particular structure to the applications using it, so that
the library can be used applying different programming paradigms (rang-
ing from event-based, reactive, programming to thread-based multiprogram-
ming). This supports different programming styles (some programmers pre-
fer thread-based multiprogramming because of its simplicity, while others
are against the thread abstraction [11]). This second requirement has some
serious implications on the API exported by the library, since concurrency
handling and parallelism have to be moved from the library to the applica-
tion using it. As it will be shown in the following, this has been obtained
by removing from GRAPES the code for receiving data from remote peers,
and by leaving such a task to the application. The received data will then
be passed to GRAPES by invoking an appropriate data parsing function.

A third requirement is modularity: GRAPES should provide all the basic
functionalities needed by a generic P2P application, without forcing the ap-
plication to use unneeded code. For this reason, the GRAPES functionalities
have been grouped in several modules (that will be described in Section 3) and

5

described by a well defined API. Each module has its own API (described by
a C header file), and can be used independently from the others (if a module
needs the functionalities of a different one, it will use them through the public
API, so that each module can be easily replaced by a user-provided imple-
mentation). As previously mentioned, all the modules that need to interact
with remote peers export a data parsing function (named ParseData(), plus
a prefix dependent on the module name).

Evaluation
Release

Testing

Implementation

Analysis

&

Requirements

Initial planing

Figure 1: IID software development model

To ensure that all the previously mentioned requirements are properly
satisfied, GRAPES development is inspired to an agile, incremental, iterative
development model (IID for short) depicted in Fig. 1. The “initial planning”
are the basic functionalities (e.g., chunks must be transferred from one peer
to another); “Requirements & analysis” is a refinement step functional to
design a simple implementation of the general planning; “Implementation”
and “Testing” require no comments, while the “Release” step indicates the
pulication of specific (tested and verified) versions of the software from time
to time.

Applications based on GRAPES communicate through messages, which
can contain data to be diffused or signalling information. Such messages are
encapsulated in network packets and sent by using a network abstraction
layer, named network helper, which allows to easily change the protocol used
for transmitting the messages, to port GRAPES to different architectures,
and so on. GRAPES modules can directly send messages (by invoking the
network helper), or can simply construct them, leaving to the application
the responsibility of sending the messages (still through the network helper).
On the receiving side, applications are responsible for invoking the network

6

helper to receive messages, and pass them to the correct GRAPES modules
(by invoking the correct ParseData() function). This architecture also en-
ables optimisations like embedding multiple messages in a single packet to
reduce the network traffic.

3 Design and Structure

LA

HA

High Abstraction APIs

Low Abstraction APIs

Figure 2: Software abstraction levels and APIs available in GRAPES

GRAPES is structured according to a two-tier abstraction level, as de-
scribed in Fig. 2. The Low Abstraction (LA) level contains elementary (not
necessarily simple) functions, which expose Application Programming Inter-
faces (APIs) that are concerned with how the functions are implemented,
including, for instance, details about the data structures, the presence of
metadata in these structure (which imply that the calling function/applica-
tion has knowledge about this metadata and its meaning) and so on. The
High Abstraction (HA) level contains instead composite software functions
(not necessarily complex) that hide from the library user and the calling ap-
plications all the details of how functions are implemented, and concentrates
solely on what the function must do, and not with the details of how to do
this.

Both HA and LA APIs are public and exposed, separated and clearly
identified in GRAPES, leaving the application designer the freedom of using
the HA or LA functions as he deems fit.

7

Since GRAPES aims at providing the basic blocks needed for building
a P2P streaming application, the most important modules composing such
applications have been identified. A preliminary analysis revealed that a
generic P2P streaming application usually needs, in addition to the net helper
module:

A Peer Set data type, to store information about the nodes connected to
a specific peer in the overlay (the so called neighbours);

A Peer Sampling mechanism, providing each peer with continuously up-
to-date random samples of the entire population of peers;

A Chunk Trading module, allowing to send/receive pieces of a media
stream (called chunks);

A Chunk Buffer, used to store the received chunks so that they can be
forwarded to the other peers;

A Chunk ID Set data type, that can be used to send signalling informa-
tion about the received or needed chunks;

Scheduling functions, which can be used to decide which chunk to send/ask,
to which peer.

The goal of the various GRAPES modules is to hide the implementation
of the mechanisms introduced above, and to make them accessible through
an uniform API. In this way, changing implementation details will be very
easy, and will have no impact on the application code.

Note that although this description of GRAPES is based on an example
using all its functionalities, applications are free to use only the needed mod-
ules. For example, a streamer based on a tree-like overlay will probably not
use the Peer Sampling module; other applications can use GRAPES’ Peer
Sampling implementing their own chunk buffer, etc...

3.1 Peer Sampling

The Peer Sampling module is used by a P2P application for joining an over-
lay: the application provides one (or more) known peers, and can obtain
a “view” containing a random sample of the peers currently active in the

8

system. Such a mechanism can be implemented by using a gossipping pro-
tocol like NewsCast [12] or CYCLON [13], or some other mechanism (the
use of a centralised database has been proposed in some situations [14]). A
simple gossipping protocol has been implemented, and an implementation of
CYCLON will be released soon. If a specialised peer sampling mechanism is
needed, it can be easily implemented in this module, and made available to all
the applications using the GRAPES API. The most important functions ex-
ported by the Peer Sampling module are: Init() (to initialise the peer sam-
pling service, and assign a local address to it), ParseData() (invoked when
a peer sampling message from a remote peer is received), AddNeighbour()
(to provide the ID of known peers; mainly used for bootstrapping), and
GetNeighbourhood() (which returns a list of the known peers). Moreover,
some metadata can be associated to each peer, to describe its attributes (for
example, upload bandwidth, etc...). The metadata are application-specific,
and are handled transparently by GRAPES.

3.2 Signalling and Chunk Trading

Once an application has a list of some of the peers participating to the P2P
system, it can exchange signalling messages (telling which chunks it needs
and/or which chunks it can provide to the other peers) and chunks with the
other peers.

GRAPES provides powerful and generic signalling protocol primitives,
which empowers the implementation of a large set of different chunk trading
mechanisms. Analysing the signalling messages required by various chunk
trading protocols found in the literature, it is clear that most signalling mes-
sages send a set of chunk IDs, but with different semantics. A buffermap, for
example, is a set of chunk IDs encoded normally as a bitmap, just as a chunk
request is usually a set with only one element. Therefore, GRAPES signalling
provides a low-level API with a generic encodeChunkSignaling() function,
that takes a Chunk ID Set and some metadata as parameters, transforming
them in a message to be sent on the network through the network helper.
The Chunk ID Set datatype is used for storing the IDs of the chunks owned
by a peer (or offered, or accepted, . . . , depending on the required semantics).
Metadata explaining the type of the message (e.g., whether the chunks are
needed or offered) and information about the chunk trading protocol (e.g.
a transaction ID) can be added to the message. Like the Chunk ID Sets,
chunks can be transmitted by using appropriate encode() (for transform-

9

ing a chunk or a Chunk ID Set in a message) and decode() functions (for
transforming a message in a chunk, or in a Chunk ID Set)1.

Based on the above low-level function, an API consisting of “high-level”
functions was also built. GRAPES implements a large set of signalling pro-
tocols, which allow the composition of very different chunk trading mecha-
nisms. The following signalling functionalities have been implemented based
on encodeChunkSignaling(): buffermap message (to inform another peer
about the status of the chunk buffer), chunk offer (to offer a set of chunks to
another peer), chunk accept (the response to an offer message), chunk request
(ask for one or more chunks) and chunk deliver (response to a request).

Various chunk trading logics can easily be obtained from the above prim-
itives: A simple “useful” push protocol (used frequently in papers analysing
epidemic streaming) [5] uses only buffermap messages; a pull protocol [6, 7]
will use request and deliver messages; and a more complex one that uses
bufferstate information to send pull requests to selected peers will use all
the buffermap, request, and deliver messages. More complex trading proto-
cols, such as push/pull protocols [15, 8], are also supported: the Technical
Report [16] reports examples of streamers built using GRAPES.

3.3 The Chunk Buffer

Chunks received by an application are generally stored in a Chunk Buffer,
from which they are taken for forwarding the stream to other peers. GRAPES
provides a Chunk Buffer API which enables to store the received chunks, and
to get a list of the currently stored chunks. The application does not have
to care about the data structure’s internals, and GRAPES is responsible for
ordering the chunks, removing the duplicates, discarding chunks that are too
old, etc

Different buffer management policies are possible: i) the buffer discards
chunks when a maximum size has been reached; ii) chunks are discarded
when the difference between their playback time and the current time is too
large; and others can be added, like storing all the chunks for a larger time,
which can be more useful for VoD systems. Many parameters, like the buffer
size, are configurable through the initialisation call.

1The implementation supports different encoding schemes, e.g. Chunk ID Sets can be
encoded both as bitmaps (useful for large dense sets), as well as lists (useful for sparse
sets or for debugging purposes)

10

The most important functions exported by the Chunk Buffer module
are: cb init() (to initialise a chunk buffer, setting its size and some im-
portant parameters), cb add chunk() (to insert a new chunk in the buffer),
and cb get chunks() (returning an ordered list of the chunks which are cur-
rently stored in the buffer). Additional functions for clearing and destroying
(freeing) a buffer are also provided.

3.4 Scheduling

During the streaming, an application often has to select chunks to send / re-
ceive, or remote peers to contact for chunk trading. All of these decisions are
performed by the peers and chunks scheduler. Note that the scheduling deci-
sions to be taken depend on the chunk trading protocol that the application
implements. For example,

• when using an epidemic streaming approach an application periodically
sends a chunk to a neighbour. Hence, it needs a chunk scheduler to
select the chunk to be sent and a peer scheduler to select the target
peer to which the chunk will be sent;

• if the application is based on a pull protocol, it has to select a set of
chunks to be requested to a neighbour, and a neighbour to which the
chunks are requested. Two scheduling functions are still needed, but
they work in a different way respect to the “push” schedulers;

• more complex protocols can be used, but any peer has still to take
scheduling decisions about the chunks to offer, and about the offers
that it wants to accept.

The GRAPES schedulers provide fundamental scheduling functions that
can be used in the situations described above, and are, in the authors’ opin-
ion, generic enough to be used in many other situations. Furthermore a
scheduling framework that can be used to implement new and more spe-
cialised schedulers is provided. The final goal is to have a scheduling API
which is compatible with the one used by SSSim [17], so that schedulers can
be easily moved from the simulator to real applications and vice-versa2.

2This feature has not been implemented yet, but will be available in future releases.

11

3.5 Other Modules

Other modules are currently under development and will be available in the
next releases of the software. For example, the development of a new module
that contain topology management algorithms such as TMan [18] that allow
to build a more structured overlay based on the random view provided by
the Peer Sampling module has just been released.

Another important GRAPES module which has not been fully developed
yet allows connecting a P2P application to the libavcodec and libavformat

libraries3, to encode/decode audio and video, and to handle multimedia for-
mats. Such a module can be used in the input and output parts of a P2P
streaming application, to implement media aware streaming (for example,
inserting an integer number of frames in each chunk, or assigning different
importance to different chunks based on the presence of reference frames in
them). The functionalities of this module have already been implemented4,
but the code still has to be integrated in the library exporting a powerful-
but-generic enough API.

4 Usage and Early Experiences

Applications based on GRAPES can use the library’s public interface (ex-
ported through C header files) to initialise the network helper and the various
GRAPES modules, to send/receive messages, and to pass them to the ap-
propriate ParseData() function. The typical application will

1. Initialise the various components

2. Enter a loop in which it:

(a) Receive messages,

(b) Demultiplex them and pass them to the appropriate module,

(c) Send back messages if needed (this can be done by the module
itself).

3http://www.ffmpeg.org
4http://imedia.disi.unitn.it/QoE shows how to use such functionalities together

with a simulator, but they have also been used in a real streamer.

12

http://www.ffmpeg.org
http://imedia.disi.unitn.it/QoE

Figure 3 shows how to do this in a single-threaded application. The wait4data()
function, exported by the network helper, allows the application to block
waiting for a message or for a timeout to fire. If a message arrives before the
timeout fires, the message is received (recv from peer() and is passed to
the proper ParseData() function, selected through a is*() function (in this
example, only the handling of the Peer Sampling messages —identified by
isTopology()— is shown; if the application uses more GRAPES modules,
other is*() and *ParseData() functions will be invoked - in place of the
“else check if the message goes to other GRAPES modules” comment).

Based on the structure described above, a simple application which builds
a P2P overlay by using the Peer Sampling service has been written with about
100 lines of C code. Such a program compiles in an executable large about
10KB, which requires less than 2KB of data to execute.

As previously explained, GRAPES does not force any particular applica-
tion structure, so it can also be used in a multi-thread environment, as shown
in Figure 4. Note that in this case the application is responsible of ensuring
mutual exclusion on the GRAPES functionalities and data structures (by
using appropriate mutexes), so GRAPES does not depend on any specific
threading library. Alternative implementations of the network helper which
allow to use GRAPES in event-based programs have been developed and will
be integrated in the main codebase soon.

To test the portability of the library, some tests have been cross-compiled
for an embedded platform (an ARM-based board) and succesfully tested on
it. This proves that the library’s dependencies are reasonable, and that
GRAPES-based application can be used in resource-constrained environ-
ments.

By using the GRAPES library, a simple but functional P2P video streamer
(based on epidemic streaming techniques) has been written with about 900
lines of C code. Since it simply uses the GRAPES API, it is quite simple
to change the chunk or peer scheduling algorithms, the chunk buffer imple-
mentation, the peer sampling protocol, or other algorithms without large
changes in the streamer’s code. If compared with some previous works [9]
(where more than 10000 lines of code had to be written), these results rep-
resent a considerable improvement, and enable easier experimentation with
novel P2P streaming approaches. The streamer program has been developed,
debugged, and tested in less than 1 day, and only depends on GRAPES (ad-
ditional dependencies on audio/video libraries can be added to use advanced
chunkisation strategies - see below); the executable size is about 26 kbytes

13

struct nodeID ∗my id ;

my id = n e t h e l p e r i n i t (my addr , my port) ;
t op In i t (myID, NULL, 0 , ””) ;

while (! done) {
new msg = wait4data (s , &timeout , NULL) ;
i f (new msg) {

l en = recv f r om peer (s , &remote ,
buf f , BUFFSIZE) ;

i f (i sTopology (bu f f)) {
topParseData (buf f , l en) ;

} /∗ e l s e check i f the message
goes to o ther GRAPES modules ∗/

node i d f r e e (remote) ;
} else {

/∗ Invoke Parse f un c t i on s with NULL
argument , to check f o r t imeouts ∗/

topParseData (NULL, 0) ;
/∗ Other modules ’ Parse () ∗/

}
}

Figure 3: Single-threaded usage of GRAPES.

(about 21 kbytes of code), and it needs less than 2 kbytes of memory for data
to execute.

The generation and the playback of chunks is based on libavcodec and
libavformat (as explained in Section 3.5, the corresponding code will be
moved into GRAPES in the next releases, and these functionalities will be
exported through a generic API), and can be easily modified to experiment
with new media-aware chunkisation techniques (for example, using 1 GOP
per chunk, or grouping frames into chunks according to their types, or using
more advanced temporal scalability approaches). Moreover, it is very sim-
ple to change the video codec, or the encoding parameters, to verify which
codecs/parameters are more suitable for P2P streaming applications.

14

void ∗ps thread (void ∗arg)
{

t op In i t (myID, NULL, 0 , ””) ;
while (! done) {

pthread mutex lock (&topology mutex) ;
topParseData (buf f , l en) ;
pthread mutex unlock(&topology mutex) ;
u s l e ep (g o s s i p i n g p e r i o d) ;

}

return NULL;
}
/∗ Thread bod i e s f o r o ther GRAPES modules ∗/

void ∗ r e cv thr ead (void ∗ arg)
{

while (! done) {
l en = recv f r om peer (s , &remote ,

buf f , BUFFSIZE) ;
i f (i sTopology (bu f f)) {

pthread mutex lock (&topology mutex) ;
topParseData (buf f , l en) ;
pthread mutex unlock(&topology mutex) ;

} /∗ e l s e check i f the message goes
to o ther GRAPES modules ∗/

node i d f r e e (remote) ;
}

return NULL;
}

int main (int argc , char ∗argv [])
{

my id = n e t h e l p e r i n i t (my addr , my port) ;

p th r ead cr ea t e (&id1 , NULL, recv thread , NULL) ;
p th r ead cr ea t e (&id2 , NULL, ps thread , NULL) ;
p th r ead cr ea t e (. . .) ; /∗ Create th reads f o r

the o ther GRAPES modules
. . . ∗/

Figure 4: Multi-threaded usage of GRAPES.

15

5 Software Status

A first release of GRAPES is available at
http://imedia.disi.unitn.it/P2PStreamers/grapes.html.
This first release provides a net helper for using the UDP protocol on POSIX
systems (it has been tested on GNU/Linux, some BSDs, MacOS X, and some
other POSIX compliant systems), a simple but functional implementation of
the modules described in Section 3, and some examples and tests. An addi-
tional peer sampling algorithm (CYCLON) has already been implemented,
but is not included in the first release, and some additional modules (such
as a topology manager) are under development and will be included in the
next release.

This first release of GRAPES has already been used as a base for building
some experimental P2P video streaming software5.

6 Conclusions and Future Work

This paper described GRAPES, a toolkit for easily and rapidly developing
P2P streaming applications. The idea behind the development of GRAPES
is that P2P streaming applications are lagging behind their potential impact
because of the inherent effort and difficulties in developing the required code.

GRAPES represent a powerful codabase containing basic functionalities
encoded with portability, efficiency, and performance in mind, that can be
used to reduce the effort for the development of a P2P streaming client by
orders of magnitude. Initial testing and development of applications within
the Napa-Wine project hint that GRAPES is fulfilling its goals and ambi-
tions, fostering the development team to sustain the effort and improve and
enrich the libraries.

As a future work, more modules will be integrated in GRAPES, and some
GRAPES-base applications will be used for performance measurements in
experimental P2P streaming systems.

5http://imedia.disi.unitn.it/P2PStreamers

16

http://imedia.disi.unitn.it/P2PStreamers/grapes.html
http://imedia.disi.unitn.it/P2PStreamers

Acknowledgements

Besides recognizing the support of the Napa-Wine project itself as a source
of inspiration and funding, we wish to thank all the Napa-Wine team for
the fruitful discussions, the constructive criticism, and for providing addi-
tional software modules that can be used in conjunction with GRAPES to
develop P2P applications. In particular the teams from Politecnico di Torino,
NEC, NetVisor, and Lightcomm efforts for the joint development of Network-
Aware, Media-Aware and Network-Wise applications are highly appreciated.

A short version of this Technical Report has been submitted for publica-
tion at the 2010 ACM Multimedia Workshop on “Advanced video streaming
techniques for peer-to-peer networks and social networking”, while a DEMO
featuring GRAPES based P2P applications has been accepted for presenta-
tion at ACM 2010 Mutimedia International Conference.

References

[1] The NAPA-WINE Project. The napa-wine project home page.
http://www.napa-wine.eu/.

[2] Pplive. http://pplive.com.

[3] Coolstreaming. http://live.coolstreaming.us.

[4] Sopcast. http://www.sopcast.com.

[5] Luca Abeni, Csaba Kiraly, and Renato Lo Cigno. On the optimal
scheduling of streaming applications in unstructured meshes. In Net-
working 09, Aachen, DE, May 2009. Springer.

[6] Xiaojun Hei, Yong Liu, and K.W. Ross. Iptv over p2p streaming net-
works: the mesh-pull approach. Communications Magazine, IEEE,
46(2):86 –92, february 2008.

[7] Meng Zhang, Qian Zhang, Lifeng Sun, and Shiqiang Yang. Understand-
ing the power of pull-based streaming protocol: Can we do better? Se-
lected Areas in Communications, IEEE Journal on, 25(9):1678 –1694,
december 2007.

17

http://www.napa-wine.eu/
http://pplive.com
http://live.coolstreaming.us
http://www.sopcast.com

[8] Alessandro Russo and Renato Lo Cigno. Delay-Aware Push/Pull Pro-
tocols for Live Video Streaming in P2P Systems. In IEEE ICC 2010,
Cape Town, South Africa, May 2010.

[9] Chao Liang, Yang Guo, and Yong Liu. Is random scheduling sufficient
in p2p video streaming? In Proceedings of ICDCS 2008, pages 53–60,
Los Alamitos, CA, USA, June 2008. IEEE Computer Society.

[10] Bryan Ford, Godmar Back, Greg Benson, Jay Lepreau, Albert Lin, and
Olin Shivers. The flux oskit: a substrate for kernel and language re-
search. In Proceedings of SOSP ’97, pages 38–51, Saint Malo, France,
1997. ACM.

[11] Robbert Van Renesse. Goal-oriented programming, or composition using
events, or threads considered harmful. In Proceedings of ACM SIGOPS
EW98 Support for Composing Distributed Applications, pages 82–87,
Sintra, Portugal, 1998. ACM.

[12] Márk Jelasity, Rachid Guerraoui, Anne-Marie Kermarrec, and Maarten
van Steen. The peer sampling service: Experimental evaluation of un-
structured gossip-based implementations. In Hans-Arno Jacobsen, edi-
tor, Middleware 2004, volume 3231 of LNCS. Springer-Verlag, 2004.

[13] S. Voulgaris, D. Gavidia, and M. Van Steen. CYCLON: Inexpensive
membership management for unstructured P2P overlays. Journal of
Network and Systems Management, 13(2):197–217, 2005.

[14] H. Li, A. Clement, M. Marchetti, E. Kapritsos, L. Robison, and
M. Dahlin. Flightpath: Obedience vs. choice in cooperative services.
In Proceedings of OSDI ’08, San Diego, CA, December 2008.

[15] Renato Lo Cigno, Alessandro Russo, and Damiano Carra. On some
fundamental properties of p2p push/pull protocols. In Second Inter-
national Conference on Communications and Electronics, ICCE 2008,
pages 67–73, HoiAn, Vietnam, June 4–6 2008.

[16] A. Russo, M. Biazzini, C. Kiraly, L. Abeni, and R. Lo Cigno.
Implementing Streamers with GRAPES: Initial Experience and Re-
sults. Technical report, TR-DISI-10-039, University of Trento, 2010.
http://disi.unitn.it/locigno/preprints/TR-DISI-10-039.pdf.

18

[17] Luca Abeni, Csaba Kiraly, and Renato Lo Cigno. SSSim: a simple and
scalable simulator for p2p streaming systems. In Proceedings of IEEE
CAMAD ’09, Pisa, Italy, June 2009.

[18] Márk Jelasity, Alberto Montresor, and Ozalp Babaoglu. T-man: Gossip-
based fast overlay topology construction. Comput. Netw., 53(13):2321–
2339, 2009.

19

	Introduction
	Requirements
	Design and Structure
	Peer Sampling
	Signalling and Chunk Trading
	The Chunk Buffer
	Scheduling
	Other Modules

	Usage and Early Experiences
	Software Status
	Conclusions and Future Work

