
Design and Implementation of a
Generic Library for P2P Streaming

Luca Abeni
University of Trento

Trento, Italy
luca.abeni@unitn.it

Csaba Kiraly
University of Trento

Trento, Italy
kiraly@disi.unitn.it

Alessandro Russo
University of Trento

Trento, Italy
russo@disi.unitn.it

Marco Biazzini
University of Trento

Trento, Italy
biazzini@disi.unitn.it

Renato Lo Cigno
University of Trento

Trento, Italy
locigno@disi.unitn.it

ABSTRACT

Practical implementation of new P2P streaming systems re-
quires a lot of coding and is often tedious and costly, slowing
down the technology transfer from the research community
to real users. GRAPES aims at solving this problem by pro-
viding a set of open-source components conceived as basic
building blocks for building new P2P streaming applications
which have in mind the savvy usage of network resources
as well as the Quality of Experience of final users. GRA-
PES is designed to be usable in different environments and
situations, to have a minimum set of pre-requisites and de-
pendencies, and not to impose any particular constraints on
applications using it. Our experience shows that GRAPES
allows the rapid development of P2P streaming applications
by writing a small amount of glue code to connect the de-
sired functionalities. Some examples (including some simple
P2P streamers) are also discussed as a means to show code
usage.

Categories and Subject Descriptors

C.2 [Computer-Communication Networks]: Distributed
Systems; D.1.3 [Programming Techniques]: Concurrent
Programming—distributed programming

General Terms

Design; Experimentation

Keywords

P2P Streaming, Implementation, GRAPES

1. INTRODUCTION
Peer-to-peer (P2P) technologies are becoming increasingly

popular as a way to overcome the scalability limitations in-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AVSTP2P’10, October 29, 2010, Firenze, Italy.
Copyright 2010 ACM 978-1-4503-0169-5/10/10 ...$10.00.

trinsic in traditional network applications based on a clien-
t/server paradigm. In particular, there is a great interest
in P2P streaming applications (both Video on Demand and
TV-like live broadcasting systems), because they have high
demands in terms of bandwidth requirements. IP-level mul-
ticast could help in reducing the network bandwidth re-
quired by an audio/video streaming system, but it is not
supported on the Internet.

In the last years the scientific community produced a lot of
research work on improving the P2P streaming technologies
to provide better quality and to better exploit the available
resources; however, commonly used P2P TV applications [2,
1, 3] do not always follow such trends, and are still based on
architectures deriving from file sharing applications, whose
requirements are far apart from (live)streaming. As a result,
the network bandwidth is not used efficiently, and the P2P
TV clients can provide a good user experience only by being
very aggressive in network usage.

In the authors opinion, such a lack of technology transfer
from the research community to commonly used applica-
tions can be solved through the availability of open-source
P2P streaming applications providing the researchers with a
working codebase that can be easily modified to experiment
with and to integrate novel ideas. To target this goal, it is
useful to remember how the free availability of open-source
kernels as Linux or FreeBSD helped the OS research com-
munity! Unfortunately, integrating experimental techniques
in an application sometimes requires drastic changes to its
structure: for example, changing the local chunk selection
algorithm can be easy, but changing a P2P streaming appli-
cation from “epidemic style” push [4] to pull [8, 18], or more
complex strategies [16] can require a complete redesign.

In other words, developing one single open source applica-

tion can impose too many constraints on the research that
can be performed on it, requiring to rewrite the applica-
tion every time a new solution has to be tested (in [12] the
authors had to implement 5 different P2P streaming appli-
cation, writing more than 10000 lines of C++ code).

This paper proposes a set of generic and reusable compo-
nents forming a codebase to develop P2P streaming appli-
cations with (almost) any structure. Such a toolkit, named
GRAPES (Generic Resource Aware P2P Environment for
Streaming), provides a set of building blocks that researchers
can use, combine, and modify to test and compare different
solutions fostering the development of new ideas as it hap-

43

pened in OS research [7]. To the authors’ best knowledge,
similar toolkits do not currently exist in the P2P commu-
nity. A possibly close work [6] identified a common API for
a Key-based Routing Layer that can be used as a base for
various P2P services, but no implementation of such an API
has been freely released to the research community.

The paper is organised as follows: Section 2 discusses the
requirements for GRAPES, which drove the main design
choices and influenced the GRAPES structure, described
in Section 3; Section 4 describes how to use GRAPES, and
presents some early experiences (showing how GRAPES can
simplify the development of P2P streaming applications); fi-
nally, Section 5 presents the conclusions and describes ongo-
ing work.

2. REQUIREMENTS
First of all, the functionalities provided by GRAPES should

be usable by as many applications as possible in as many dif-
ferent environments as possible. This means that GRAPES
should be able to run in many different platforms/operating
systems, and should be accessible to many different devel-
opment tools and runtime environments. For this reason,
GRAPES has been implemented as a C library, since almost
every development platform provides a C compiler, and it
is quite easy to develop bindings to other languages such
as python, java, etc... C++ programs can directly link to
the GRAPES library without needing any kind of wrapper
or special bindings. Moreover, C does not requires complex
runtime support, or system libraries.

For the same reason, the amount of dependencies for GRA-
PES has been reduced to the minimum (no dependencies on
external libraries, etc). The result is that GRAPES can be
used on many different systems, ranging from large network
servers to small and not-so-powerful embedded devices.

A second requirement, more difficult to fulfil, is that GRA-
PES should not impose any particular structure to the appli-
cations using it, so that the library can be used applying dif-
ferent programming paradigms (ranging from event-based,
reactive, programming to thread-based multiprogramming).
In this way, GRAPES supports different programming styles
(some programmers prefer thread-based multiprogramming
because of its simplicity, while others are against the thread
abstraction [14]). This second requirement has some serious
implications on the API exported by the library, since con-
currency handling and support for parallel activities have to
be moved from the library to the application using it. As
it will be shown in the following, this has been obtained by
removing from GRAPES the code for receiving data from re-
mote peers (and for demultiplexing the received data), and
by leaving such a task to the application. The received data
will then be passed to GRAPES by invoking an appropriate
data parsing function.

A third requirement is modularity: GRAPES should pro-
vide all the basic functionalities needed by a generic P2P
application, without forcing the application to use unneeded
code. For this reason, the GRAPES functionalities have
been grouped in several modules (that will be described in
Section 3) and described by a well defined API. Each module
has its own API (described by a C header file), and can be
used independently from the others (if a module needs the
functionalities of a different one, it will use them through the
public API, so that each module can be easily replaced by
a user-provided implementation). As previously mentioned,

all the modules that need to interact with remote peers ex-
port a data parsing function (named ParseData(), plus a
prefix dependent on the module name).

Applications based on GRAPES communicate through
messages, which can contain data to be diffused or sig-
nalling information. Such messages are encapsulated in net-
work packets and sent by using a network abstraction layer,
named network helper, which allows to easily change the pro-
tocol used for transmitting the messages, to port GRAPES
to different architectures, and so on. GRAPES modules can
directly send messages (by invoking the network helper),
or can simply construct them, leaving to the application the
responsibility of sending the messages (still through the net-
work helper). On the receiving side, applications are respon-
sible for invoking the network helper to receive messages,
and pass them to the correct GRAPES modules (by invok-
ing the correct ParseData() function). This architecture
also enables optimisations like embedding multiple messages
in a single packet to reduce the network traffic.

3. DESIGN AND STRUCTURE
Since GRAPES aims at providing the basic blocks needed

for building a P2P streaming application, the most impor-
tant modules composing such applications have been iden-
tified. A preliminary analysis revealed that a generic P2P
streaming application usually needs, in addition to the net
helper module:

A Peer Sampling mechanism, providing each peer with
continuously up-to-date random samples of the entire
population of peers;

A Chunk Trading module, allowing to send/receive pieces
of a media stream (called chunks);

A Chunk Buffer, used to store the received chunks so that
they can be forwarded to the other peers;

A Chunk ID Set data type, that can be used to send sig-
nalling information about the received or needed chunks;

Some Scheduling functions, which can be used to decide
which chunk to send/ask, to which peer;

A Peer Set data type, to store neighbours in a structure
describing the overlay.

The goal of the various GRAPES modules is to hide the
implementation of the mechanisms introduced above, and
to make them accessible through an uniform and generic
programming interface. In this way, implementation details
of the various mechanisms can be easily changed without
affecting the application code.

Note that although the following description of GRAPES
is based on an example using all its functionalities, applica-
tions are free to use only the needed modules. For example,
a streamer based on a tree-like overlay will probably not use
the Peer Sampling module; other applications can use GRA-
PES’ Peer Sampling implementing their own chunk buffer,
etc...

3.1 Peer Sampling
The Peer Sampling module is used by a P2P application

for joining an overlay: the application provides to the peer
sampling mechanism one (or more) known peers, and can

44

obtain a “view” containing a random sample of all the peers
currently active in the system. Such a mechanism can be im-
plemented by using a gossipping protocol like NewsCast [9]
or CYCLON [17], or some other mechanism (the use of a cen-
tralised database has been proposed in some situations [11]).
Currently, a simple gossipping protocol (similar to News-
Cast) has been implemented, and an implementation of CY-
CLON will be released soon. If a specialised peer sampling
mechanism is needed, it can be easily implemented in this
module, and made available to all the applications using the
GRAPES API. The most important functions exported by
the Peer Sampling module are:

• Init(), to initialise the peer sampling service, and as-
sign a local address to it

• ParseData(), invoked when a peer sampling message
from a remote peer is received

• AddNeighbour(), to provide the ID of known peers;
mainly used for bootstrapping

• RemoveNeighbour(), to remove a peer from the local
view

• GetNeighbourhood(), which returns a random sample
of the peers (a list of the known peers)

• GrowNeighbourhood() and ShrinkNeighbourhood(), to
modify the size of the local view (the set of known
peers)

• GetMetadata() and ChangeMetadata(), to get and mod-
ify the metadata associated to a peer.

Moreover, some metadata can be associated to each peer,
to describe its attributes (for example, upload bandwidth,
etc...). The metadata are application-specific, and are han-
dled transparently by GRAPES.

3.2 Signalling and Chunk Trading
Once an application has a list of some of the peers partic-

ipating to the P2P system, it can exchange signalling mes-
sages (telling which chunks it needs and/or which chunks it
can provide to the other peers) and chunks with the other
peers.

GRAPES provides powerful and generic signalling proto-
col primitives, which allow to implement a large set of dif-
ferent chunk trading mechanisms. Analysing the signalling
messages required by various chunk trading protocols found
in the literature, it is clear that most signalling messages
send a set of chunk IDs, but with different semantics. A
buffermap, for example, is a set of chunk IDs encoded nor-
mally as a bitmap, just as a chunk request is usually a set
with only one element.

Therefore, GRAPES provides a Chunk ID Set datatype
that can be used for storing the IDs of the chunks owned
(or needed, or offered, or accepted, . . . , depending on the
required semantics) by a peer. The signalling functionalities
also provide a low-level API with a generic encodeChunkSig-
naling() function, that takes a Chunk ID Set as a parame-
ter, transforming it in a message to be sent on the network
through the network helper. Metadata explaining the type
and the semantic of the message (e.g., whether the chunks
are needed or offered) and information about the chunk trad-
ing protocol (e.g. a transaction ID) can also be encoded by

encodeChunkSignaling() and added to the message. Note
that the current implementation supports different encod-
ing schemes, e.g., Chunk ID Sets can be encoded both as
bitmaps (useful for large dense sets), as well as lists (useful
for sparse sets or for debugging purposes, optionally assign-
ing priorities and other information to the various chunk
instances. The different encoding schemes support different
trade-offs between bandwidth usage and represented infor-
mation.

Like the Chunk ID Sets, chunks can be transmitted by
using appropriate encode() (encodeChunk(), for transform-
ing a chunk or a Chunk ID Set in a message) and decode()

functions (decodeChunk(), for transforming a message in a
chunk).

Based on the above low-level function, an API consist-
ing of “high-level” functions has also been built. Thanks to
such a high-level API, GRAPES implements a large set of
signalling protocols, which allow the composition of very dif-
ferent chunk trading mechanisms. The following signalling
functionalities have been implemented based on encodeChunk-

Signaling():

• buffermap message (to inform another peer about the
status of the chunk buffer)

• chunk offer (to offer a set of chunks to another peer)

• chunk accept (the response to an offer message)

• chunk request (ask for one or more chunks)

• chunk deliver (response to a request)

Various chunk trading logics can easily be obtained from
the above primitives: A simple “useful” push protocol (used
frequently in papers analysing epidemic streaming) [4] uses
only buffermap messages; a pull protocol [8, 18] will use re-
quest and deliver messages; and a more complex one that
uses bufferstate information to send pull requests to se-
lected peers will use all the buffermap, request, and de-
liver messages. More complex trading protocols, such as
an offer-accept protocol are also supported: the Technical
Report [15] reports examples of streamers built using GRA-
PES.

At the implementation level, the above messages are rather
similar and therefore easily parseable. Signalling informa-
tion are encapsulated in messages by a message type, by
using the Chunk ID Set datatype, and some other informa-
tion (encoded as metadata) such as a transaction ID and the
maximum number of chunks to be delivered.

3.3 The Chunk Buffer
Chunks received by an application are generally stored in a

Chunk Buffer, from which they are taken for forwarding the
stream to other peers. GRAPES provides a Chunk Buffer
API which enables to store the received chunks, and to get
a list of the currently stored chunks. The application does
not have to care about the data structure’s internals, and
GRAPES is responsible for ordering the chunks, removing
the duplicates, discarding chunks that are too old, etc

Different buffer management policies are possible:

1. the buffer discards chunks when a maximum size has
been reached;

2. chunks are discarded when the difference between their
playback time and the current time is too large.

45

Other, more advanced, policies can be designed and added
to the library without affecting its interface, or the user code
(for example, storing all the chunks for a larger time, which
can be more useful for VoD systems). Many parameters, like
the buffer size, are configurable through the initialisation
call.

The functions exported by the Chunk Buffer module are:

• cb_init(), to initialise a chunk buffer, setting its size
and some important parameters

• cb_add_chunk(), to insert a new chunk in the buffer

• cb_get_chunks(), returning an ordered list of all the
chunks which are currently stored in the buffer

• cb_get_chunk(), returning a specified chunk from a
buffer

• cb_clear(), to remove all the chunks from a buffer

• cb_destroy(), to destroy a buffer, freeing all the re-
sources used by it

3.4 Scheduling
During the streaming, an application often has to select

chunks to send / receive, or remote peers to contact for
chunk trading. All of these decisions are performed by the
peers and chunks scheduler. Note that the scheduling de-
cisions to be taken depend on the chunk trading protocol
that the application implements. For example, when using
an epidemic streaming approach an application periodically
sends a chunk to a neighbour. Hence, it needs a chunk sched-
uler to select the chunk to be sent and a peer scheduler to
select the target peer to which the chunk will be sent. In
alternative if the application is based on a pull protocol, it
has to select a set of chunks to be requested to a neigh-
bour, and a neighbour to which the chunks are requested:
Two scheduling functions are still needed, but they work in
a different way respect to the “push” schedulers. Finally,
more complex protocols (such as an offer/trade protocol)
can be used, but any peer has still to take scheduling deci-
sions about the chunks to offer, and about the offers that it
wants to accept.

The GRAPES scheduler provides fundamental scheduling
functions that can be used in the situations described above,
and are, in the authors’ opinion, generic enough to be used in
many other situations. Furthermore a scheduling framework

that can be used to implement new and more specialised
schedulers is provided. The final goal is to have a scheduling
API which is compatible with the one used by SSSim [5], so
that schedulers can be easily moved from the simulator to
real applications and vice-versa1.

3.5 Other Modules
Other modules are currently under development and will

be available in the next releases of the software. For exam-
ple, a new module will contain some topology management

algorithms such as TMan [10] that allow to build a more
structured overlay based on the random view provided by
the Peer Sampling module.

1This feature has not been implemented yet, but will be
available in future releases.

Another important GRAPES module which has not been
fully yet allows to connect a P2P application with the libav-
codec and libavformat libraries2, to encode/decode audio
and video, and to handle multimedia formats. Such a mod-
ule can be used in the input and output parts of a P2P
streaming application, to implement media aware stream-

ing (for example, inserting an integer number of frames in
each chunk, or assigning different importance to different
chunks based on the presence of reference frames in them).
The functionalities of this module have already been im-
plemented, and [13] shows how to use such functionalities
together with a simulator, but they have also been used in
a real streamer. The code is available at http://imedia.

disi.unitn.it/QoE, but it still has to be integrated in the
library exporting a powerful-but-generic enough API.

4. USAGE AND EARLY EXPERIENCES
Applications based on GRAPES can use the library’s pub-

lic interface (exported through some C header files) to ini-
tialise the network helper and the various GRAPES mod-
ules, to send/receive messages, and to pass them to the
appropriate ParseData() function. The typical application
will

1. Initialise the various components

2. Enter a loop in which it:

(a) Receive messages

(b) Demultiplex them and pass them to the appropri-
ate module

(c) Eventually send back messages (this can be done
by the module itself

Figure 1 shows how to do this in a single-threaded applica-
tion. The wait4data() function, exported by the network
helper, allows the application to block waiting for a mes-
sage or for a timeout to fire. If a message arrives before the
timeout fires, the message is received (recv_from_peer()
and is passed to the proper ParseData() function, selected
through a is*() function (in this example, only the handling
of the Peer Sampling messages - identified by isTopology()

- is shown; if the application uses more GRAPES modules,
other is*() and *ParseData() functions will be invoked -
in place of the “else check if the message goes to other GRA-
PES modules” comment).

Based on the structure described above, a simple applica-
tion which builds a P2P overlay by using the Peer Sampling
service has been written with about 100 lines of C code.
Such a program compiles in an executable large about 10 kB,
which requires less than 2 kB of data to execute.

As previously explained, GRAPES does not force any par-
ticular application structure, so it can also be used in a
multi-thread environment, as shown in Figure 2. Note that
in this case the application is responsible of ensuring mutual
exclusion on the GRAPES functionalities and data struc-
tures (by using appropriate mutexes), so GRAPES does not
depend on any specific threading library. Alternative imple-
mentations of the network helper which allow to use GRA-
PES in event-based programs have been developed and will
be integrated in the main codebase soon.

2http://www.ffmpeg.org

46

struct nodeID ∗my id ;

my id = n e t h e l p e r i n i t (my addr , my port) ;
t op In i t (myID, NULL, 0 , ””) ;

while (! done) {
new msg = wait4data (s , &timeout , NULL) ;
i f (new msg) {

l en = recv f rom pee r (s , &remote ,
buf f , BUFFSIZE) ;

i f (i sTopology (bu f f)) {
topParseData (buf f , l en) ;

} /∗ e l s e check i f the message
goes to o ther GRAPES modules ∗/

node i d f r e e (remote) ;
} else {

/∗ Invoke Parse func t i ons with NULL
argument , to check f o r t imeouts ∗/

topParseData (NULL, 0) ;
/∗ Other modules ’ Parse () ∗/

}
}

Figure 1: Single-threaded usage of GRAPES.

To test the portability of the library, some tests have been
cross-compiled for an embedded platform (an ARM-based
board) and successfully tested on it. This proves that the li-
brary’s dependencies are minimal, and that GRAPES-based
applications can be used in resource-constrained environ-
ments.

By using the GRAPES library, a simple but functional
P2P video streamer (based on epidemic streaming techniques)
has been written with about 900 lines of C code. Since it is
based on the GRAPES API, it is quite simple to change the
chunk or peer scheduling algorithms, the chunk buffer imple-
mentation, the peer sampling protocol, or other algorithms
without large changes in the streamer’s code. If compared
with some previous works [12] (where more than 10000 lines
of code had to be written), these results represent a consid-
erable improvement, and enable easier experimentation with
novel P2P streaming approaches. The streamer program has
been developed, debugged, and tested in less than one day,
and only depends on GRAPES (additional dependencies on
audio/video libraries can be added to use advanced chunki-
sation strategies - see below); the executable size is about
26 kB (about 21 kB of code), and it needs less than 2 kB of
memory for data to execute.

The generation and the playback of chunks is based on
libavcodec and libavformat (as explained in Section 3.5,
the corresponding code will be moved into GRAPES in the
next releases, and these functionalities will be exported through
a generic API), and can be easily modified to experiment
with new media-aware chunkisation techniques (for exam-
ple, using 1 GoP per chunk, or grouping frames into chunks
according to their types, or using more advanced tempo-
ral scalability approaches). Moreover, it is very simple to
change the video codec, or the encoding parameters, to ver-
ify which codecs/parameters are more suitable for P2P stream-
ing applications. If the dependencies on libavcodec and
libavformat are removed (by disabling support for advanced
chunkisation techniques in the input and output modules),
the streamer is still able to receive and forward chunks, and

void ∗ ps thread (void ∗ arg)
{

t op In i t (myID, NULL, 0 , ””) ;
while (! done) {

pthread mutex lock(&topology mutex) ;
topParseData (buf f , l en) ;
pthread mutex unlock(&topology mutex) ;
u s l e ep (g o s s i p i n g p e r i o d) ;

}

return NULL;
}
/∗ Thread bod ie s f o r o ther GRAPES modules ∗/

void ∗ r e cv thread (void ∗ arg)
{

while (! done) {
l en = recv f rom pee r (s , &remote ,

buf f , BUFFSIZE) ;
i f (i sTopology (bu f f)) {

pthread mutex lock(&topology mutex) ;
topParseData (buf f , l en) ;
pthread mutex unlock(&topology mutex) ;

} /∗ e l s e check i f the message goes
to o ther GRAPES modules ∗/

node i d f r e e (remote) ;
}

return NULL;
}

int main (int argc , char ∗argv [])
{

my id = n e t h e l p e r i n i t (my addr , my port) ;

p th r ead c r ea t e (&id1 , NULL,
recv thread , NULL) ;

p th r ead c r ea t e (&id2 , NULL,
ps thread , NULL) ;

p th r ead c r ea t e (. . .) ; /∗ Create threads
f o r the other GRAPES modules . . . ∗/

Figure 2: Multi-threaded usage of GRAPES.

can be used as a superpeer or to improve the available upload
bandwidth in a P2P system.

Thanks to the flexibility of the GRAPES API, the streamer
has been modified to implement different chunk trading pro-
tocols [15], allowing to run experiments to compare such pro-
tocols through real tests on the internet (and not through
simulations).

5. CONCLUSIONS AND FUTUREWORK
This paper described GRAPES, a toolkit for easily and

rapidly developing P2P streaming applications. A first re-
lease of GRAPES is available at http://imedia.disi.unitn.
it/P2PStreamers/grapes.html. This first release provides
a net helper for using the UDP protocol on POSIX sys-
tems (it has been tested on GNU/Linux, some BSDs, Ma-
cOS X, and some other POSIX compliant systems), a sim-
ple but functional implementation of the modules described
in Section 3, and some examples and tests. An additional
peer sampling algorithm (CYCLON) has already been im-
plemented, but is not included in the first release, and some
additional modules (such as a topology manager) are under
development and will be included in the next release.

This first release of GRAPES has already been used as

47

a base for building some experimental P2P video streaming
software3.

As a future work, more modules will be integrated in
GRAPES, and some GRAPES-base applications will be used
for performance measurements in experimental P2P stream-
ing systems.

6. ACKNOWLEDGEMENTS
This work is partly supported by the European Com-

mission through the NAPA-WINE Project (Network-Aware
P2P-TV Application over Wise Network4), ICT Call 1 FP7-
ICT-2007-1, 1.5 Networked Media, grant No. 214412.

The authors are also deeply in debt to all the people in-
volved in the NAPA-WINE project for the fruitful discus-
sions and for patiently using the GRAPES code for the de-
velopment of applications following the NAPA-WINE ap-
proach and architecture.

7. REFERENCES
[1] Coolstreaming. http://live.coolstreaming.us.

[2] Pplive. http://pplive.com.

[3] Sopcast. http://www.sopcast.com.

[4] Abeni, L., Kiraly, C., and Lo Cigno, R. On the
optimal scheduling of streaming applications in
unstructured meshes. In Networking 09 (Aachen, DE,
May 2009), Springer.

[5] Abeni, L., Kiraly, C., and Lo Cigno, R. SSSim: a
simple and scalable simulator for p2p streaming
systems. In Proceedings of IEEE CAMAD ’09 (Pisa,
Italy, June 2009).

[6] Dabek, F., Zhao, B., Druschel, P., Kubiatowicz,

J., and Stoica, I. Towards a common API for
structured peer-to-peer overlays. Peer-to-Peer Systems

II (2003), 33–44.

[7] Ford, B., Back, G., Benson, G., Lepreau, J., Lin,

A., and Shivers, O. The flux oskit: a substrate for
kernel and language research. In Proceedings of SOSP

’97 (Saint Malo, France, 1997), ACM, pp. 38–51.

[8] Hei, X., Liu, Y., and Ross, K. Iptv over p2p
streaming networks: the mesh-pull approach.
Communications Magazine, IEEE 46, 2 (february
2008), 86 –92.

3http://imedia.disi.unitn.it/P2PStreamers
4http://www.napa-wine.eu

[9] Jelasity, M., Guerraoui, R., Kermarrec, A.-M.,

and van Steen, M. The peer sampling service:
Experimental evaluation of unstructured gossip-based
implementations. In Middleware 2004 (2004), H.-A.
Jacobsen, Ed., vol. 3231 of LNCS, Springer-Verlag.

[10] Jelasity, M., Montresor, A., and Babaoglu, O.

T-man: Gossip-based fast overlay topology
construction. Comput. Netw. 53, 13 (2009), 2321–2339.

[11] Li, H., Clement, A., Marchetti, M., Kapritsos,

E., Robison, L., and Dahlin, M. Flightpath:
Obedience vs. choice in cooperative services. In
Proceedings of OSDI ’08 (San Diego, CA, December
2008).

[12] Liang, C., Guo, Y., and Liu, Y. Is random
scheduling sufficient in p2p video streaming? In
Proceedings of ICDCS 2008 (Los Alamitos, CA, USA,
June 2008), IEEE Computer Society, pp. 53–60.

[13] Kiraly, C., and Lo Cigno, R., and Abeni, L.

Deadline-based Differentiation in P2P Streaming In
Proceedings of IEEE Globecom ’10 Miami, FL, USA,
Dec. 2010.

[14] Renesse, R. V. Goal-oriented programming, or
composition using events, or threads considered
harmful. In Proceedings of ACM SIGOPS EW98

Support for Composing Distributed Applications

(Sintra, Portugal, 1998), ACM, pp. 82–87.

[15] Russo, A., Biazzini, M., Kiraly, C., Abeni, L.,

and Lo Cigno, R. Implementing Streamers with
GRAPES: Initial Experience and Results. Tech. rep.,
TR-DISI-10-039, University of Trento, 2010.
http://disi.unitn.it/locigno/preprints/TR-DISI-10-
039.pdf.

[16] Russo, A., and Lo Cigno, R. Delay-Aware
Push/Pull Protocols for Live Video Streaming in P2P
Systems. In IEEE ICC 2010 (Cape Town, South
Africa, May 2010).

[17] Voulgaris, S., Gavidia, D., and Van Steen, M.

CYCLON: Inexpensive membership management for
unstructured P2P overlays. Journal of Network and

Systems Management 13, 2 (2005), 197–217.

[18] Zhang, M., Zhang, Q., Sun, L., and Yang, S.

Understanding the power of pull-based streaming
protocol: Can we do better? Selected Areas in

Communications, IEEE Journal on 25, 9 (december
2007), 1678 –1694.

48

